3.3.65 \(\int \frac {(e \cos (c+d x))^{11/2}}{(a+a \sin (c+d x))^4} \, dx\) [265]

3.3.65.1 Optimal result
3.3.65.2 Mathematica [C] (verified)
3.3.65.3 Rubi [A] (verified)
3.3.65.4 Maple [A] (verified)
3.3.65.5 Fricas [C] (verification not implemented)
3.3.65.6 Sympy [F(-1)]
3.3.65.7 Maxima [F]
3.3.65.8 Giac [F]
3.3.65.9 Mupad [F(-1)]

3.3.65.1 Optimal result

Integrand size = 25, antiderivative size = 145 \[ \int \frac {(e \cos (c+d x))^{11/2}}{(a+a \sin (c+d x))^4} \, dx=-\frac {10 e^6 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a^4 d \sqrt {e \cos (c+d x)}}-\frac {10 e^5 \sqrt {e \cos (c+d x)} \sin (c+d x)}{a^4 d}-\frac {4 e (e \cos (c+d x))^{9/2}}{3 a d (a+a \sin (c+d x))^3}-\frac {12 e^3 (e \cos (c+d x))^{5/2}}{d \left (a^4+a^4 \sin (c+d x)\right )} \]

output
-4/3*e*(e*cos(d*x+c))^(9/2)/a/d/(a+a*sin(d*x+c))^3-12*e^3*(e*cos(d*x+c))^( 
5/2)/d/(a^4+a^4*sin(d*x+c))-10*e^6*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d* 
x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)/a^4/d/(e*c 
os(d*x+c))^(1/2)-10*e^5*sin(d*x+c)*(e*cos(d*x+c))^(1/2)/a^4/d
 
3.3.65.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.11 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.46 \[ \int \frac {(e \cos (c+d x))^{11/2}}{(a+a \sin (c+d x))^4} \, dx=-\frac {\sqrt [4]{2} (e \cos (c+d x))^{13/2} \operatorname {Hypergeometric2F1}\left (\frac {7}{4},\frac {13}{4},\frac {17}{4},\frac {1}{2} (1-\sin (c+d x))\right )}{13 a^4 d e (1+\sin (c+d x))^{13/4}} \]

input
Integrate[(e*Cos[c + d*x])^(11/2)/(a + a*Sin[c + d*x])^4,x]
 
output
-1/13*(2^(1/4)*(e*Cos[c + d*x])^(13/2)*Hypergeometric2F1[7/4, 13/4, 17/4, 
(1 - Sin[c + d*x])/2])/(a^4*d*e*(1 + Sin[c + d*x])^(13/4))
 
3.3.65.3 Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 157, normalized size of antiderivative = 1.08, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 3159, 3042, 3159, 3042, 3115, 3042, 3121, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e \cos (c+d x))^{11/2}}{(a \sin (c+d x)+a)^4} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(e \cos (c+d x))^{11/2}}{(a \sin (c+d x)+a)^4}dx\)

\(\Big \downarrow \) 3159

\(\displaystyle -\frac {3 e^2 \int \frac {(e \cos (c+d x))^{7/2}}{(\sin (c+d x) a+a)^2}dx}{a^2}-\frac {4 e (e \cos (c+d x))^{9/2}}{3 a d (a \sin (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {3 e^2 \int \frac {(e \cos (c+d x))^{7/2}}{(\sin (c+d x) a+a)^2}dx}{a^2}-\frac {4 e (e \cos (c+d x))^{9/2}}{3 a d (a \sin (c+d x)+a)^3}\)

\(\Big \downarrow \) 3159

\(\displaystyle -\frac {3 e^2 \left (\frac {5 e^2 \int (e \cos (c+d x))^{3/2}dx}{a^2}+\frac {4 e (e \cos (c+d x))^{5/2}}{d \left (a^2 \sin (c+d x)+a^2\right )}\right )}{a^2}-\frac {4 e (e \cos (c+d x))^{9/2}}{3 a d (a \sin (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {3 e^2 \left (\frac {5 e^2 \int \left (e \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}dx}{a^2}+\frac {4 e (e \cos (c+d x))^{5/2}}{d \left (a^2 \sin (c+d x)+a^2\right )}\right )}{a^2}-\frac {4 e (e \cos (c+d x))^{9/2}}{3 a d (a \sin (c+d x)+a)^3}\)

\(\Big \downarrow \) 3115

\(\displaystyle -\frac {3 e^2 \left (\frac {5 e^2 \left (\frac {1}{3} e^2 \int \frac {1}{\sqrt {e \cos (c+d x)}}dx+\frac {2 e \sin (c+d x) \sqrt {e \cos (c+d x)}}{3 d}\right )}{a^2}+\frac {4 e (e \cos (c+d x))^{5/2}}{d \left (a^2 \sin (c+d x)+a^2\right )}\right )}{a^2}-\frac {4 e (e \cos (c+d x))^{9/2}}{3 a d (a \sin (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {3 e^2 \left (\frac {5 e^2 \left (\frac {1}{3} e^2 \int \frac {1}{\sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 e \sin (c+d x) \sqrt {e \cos (c+d x)}}{3 d}\right )}{a^2}+\frac {4 e (e \cos (c+d x))^{5/2}}{d \left (a^2 \sin (c+d x)+a^2\right )}\right )}{a^2}-\frac {4 e (e \cos (c+d x))^{9/2}}{3 a d (a \sin (c+d x)+a)^3}\)

\(\Big \downarrow \) 3121

\(\displaystyle -\frac {3 e^2 \left (\frac {5 e^2 \left (\frac {e^2 \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{3 \sqrt {e \cos (c+d x)}}+\frac {2 e \sin (c+d x) \sqrt {e \cos (c+d x)}}{3 d}\right )}{a^2}+\frac {4 e (e \cos (c+d x))^{5/2}}{d \left (a^2 \sin (c+d x)+a^2\right )}\right )}{a^2}-\frac {4 e (e \cos (c+d x))^{9/2}}{3 a d (a \sin (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {3 e^2 \left (\frac {5 e^2 \left (\frac {e^2 \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 \sqrt {e \cos (c+d x)}}+\frac {2 e \sin (c+d x) \sqrt {e \cos (c+d x)}}{3 d}\right )}{a^2}+\frac {4 e (e \cos (c+d x))^{5/2}}{d \left (a^2 \sin (c+d x)+a^2\right )}\right )}{a^2}-\frac {4 e (e \cos (c+d x))^{9/2}}{3 a d (a \sin (c+d x)+a)^3}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {3 e^2 \left (\frac {5 e^2 \left (\frac {2 e^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d \sqrt {e \cos (c+d x)}}+\frac {2 e \sin (c+d x) \sqrt {e \cos (c+d x)}}{3 d}\right )}{a^2}+\frac {4 e (e \cos (c+d x))^{5/2}}{d \left (a^2 \sin (c+d x)+a^2\right )}\right )}{a^2}-\frac {4 e (e \cos (c+d x))^{9/2}}{3 a d (a \sin (c+d x)+a)^3}\)

input
Int[(e*Cos[c + d*x])^(11/2)/(a + a*Sin[c + d*x])^4,x]
 
output
(-4*e*(e*Cos[c + d*x])^(9/2))/(3*a*d*(a + a*Sin[c + d*x])^3) - (3*e^2*((4* 
e*(e*Cos[c + d*x])^(5/2))/(d*(a^2 + a^2*Sin[c + d*x])) + (5*e^2*((2*e^2*Sq 
rt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(3*d*Sqrt[e*Cos[c + d*x]]) + ( 
2*e*Sqrt[e*Cos[c + d*x]]*Sin[c + d*x])/(3*d)))/a^2))/a^2
 

3.3.65.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3159
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[2*g*(g*Cos[e + f*x])^(p - 1)*((a + b*Sin[e + f 
*x])^(m + 1)/(b*f*(2*m + p + 1))), x] + Simp[g^2*((p - 1)/(b^2*(2*m + p + 1 
)))   Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; 
FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] & 
& NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*p]
 
3.3.65.4 Maple [A] (verified)

Time = 4.33 (sec) , antiderivative size = 263, normalized size of antiderivative = 1.81

\[-\frac {2 \left (8 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-8 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-30 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-48 \left (\sin ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+18 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+15 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+48 \left (\sin ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-20 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) e^{6}}{3 \left (2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) a^{4} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) e +e}\, d}\]

input
int((e*cos(d*x+c))^(11/2)/(a+a*sin(d*x+c))^4,x)
 
output
-2/3/(2*sin(1/2*d*x+1/2*c)^2-1)/a^4/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2 
*c)^2*e+e)^(1/2)*(8*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-8*sin(1/2*d*x+ 
1/2*c)^4*cos(1/2*d*x+1/2*c)-30*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos( 
1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c 
)^2-48*sin(1/2*d*x+1/2*c)^5+18*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+15* 
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(co 
s(1/2*d*x+1/2*c),2^(1/2))+48*sin(1/2*d*x+1/2*c)^3-20*sin(1/2*d*x+1/2*c))*e 
^6/d
 
3.3.65.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.07 \[ \int \frac {(e \cos (c+d x))^{11/2}}{(a+a \sin (c+d x))^4} \, dx=-\frac {15 \, {\left (-i \, \sqrt {2} e^{5} \sin \left (d x + c\right ) - i \, \sqrt {2} e^{5}\right )} \sqrt {e} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 15 \, {\left (i \, \sqrt {2} e^{5} \sin \left (d x + c\right ) + i \, \sqrt {2} e^{5}\right )} \sqrt {e} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 2 \, {\left (e^{5} \cos \left (d x + c\right )^{2} + 11 \, e^{5} \sin \left (d x + c\right ) + 19 \, e^{5}\right )} \sqrt {e \cos \left (d x + c\right )}}{3 \, {\left (a^{4} d \sin \left (d x + c\right ) + a^{4} d\right )}} \]

input
integrate((e*cos(d*x+c))^(11/2)/(a+a*sin(d*x+c))^4,x, algorithm="fricas")
 
output
-1/3*(15*(-I*sqrt(2)*e^5*sin(d*x + c) - I*sqrt(2)*e^5)*sqrt(e)*weierstrass 
PInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 15*(I*sqrt(2)*e^5*sin(d*x 
 + c) + I*sqrt(2)*e^5)*sqrt(e)*weierstrassPInverse(-4, 0, cos(d*x + c) - I 
*sin(d*x + c)) + 2*(e^5*cos(d*x + c)^2 + 11*e^5*sin(d*x + c) + 19*e^5)*sqr 
t(e*cos(d*x + c)))/(a^4*d*sin(d*x + c) + a^4*d)
 
3.3.65.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(e \cos (c+d x))^{11/2}}{(a+a \sin (c+d x))^4} \, dx=\text {Timed out} \]

input
integrate((e*cos(d*x+c))**(11/2)/(a+a*sin(d*x+c))**4,x)
 
output
Timed out
 
3.3.65.7 Maxima [F]

\[ \int \frac {(e \cos (c+d x))^{11/2}}{(a+a \sin (c+d x))^4} \, dx=\int { \frac {\left (e \cos \left (d x + c\right )\right )^{\frac {11}{2}}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{4}} \,d x } \]

input
integrate((e*cos(d*x+c))^(11/2)/(a+a*sin(d*x+c))^4,x, algorithm="maxima")
 
output
integrate((e*cos(d*x + c))^(11/2)/(a*sin(d*x + c) + a)^4, x)
 
3.3.65.8 Giac [F]

\[ \int \frac {(e \cos (c+d x))^{11/2}}{(a+a \sin (c+d x))^4} \, dx=\int { \frac {\left (e \cos \left (d x + c\right )\right )^{\frac {11}{2}}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{4}} \,d x } \]

input
integrate((e*cos(d*x+c))^(11/2)/(a+a*sin(d*x+c))^4,x, algorithm="giac")
 
output
integrate((e*cos(d*x + c))^(11/2)/(a*sin(d*x + c) + a)^4, x)
 
3.3.65.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(e \cos (c+d x))^{11/2}}{(a+a \sin (c+d x))^4} \, dx=\int \frac {{\left (e\,\cos \left (c+d\,x\right )\right )}^{11/2}}{{\left (a+a\,\sin \left (c+d\,x\right )\right )}^4} \,d x \]

input
int((e*cos(c + d*x))^(11/2)/(a + a*sin(c + d*x))^4,x)
 
output
int((e*cos(c + d*x))^(11/2)/(a + a*sin(c + d*x))^4, x)